Efficient solution of two-stage stochastic linear programs using interior point methods

نویسندگان

  • John R. Birge
  • Derek F. Holmes
چکیده

Solving deterministic equivalent formulations of two-stage stochastic linear programs using interior point methods may be computationally diflicult due to the need to factorize quite dense search direction matrices (e.g., AAT). Several methods for improving the algorithmic efficiency of interior point algorithms by reducing the density of these matrices have been proposed in the literature. Reformulating the program decreases the effort required to find a search direction, but at the expense of increased problem size. Using transpose product formulations (e.g., A*A) works well but is highly problem dependent, Schur complements may require solutions with potentially near singular matrices. Explicit factorizations of the search direction matrices eliminate these problems while only requiring the solution to several small, independent linear systems. These systems may be distributed across multiple processors. Computational experience with these methods suggests that substantial performance improvements are possible with each method and that, generally, explicit factorizations require the least computational effort.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birge and Qi Method for Three-Stage Stochastic Programs Using IPM

One approach how to solve a linear optimization problem is based on the interior point method. This method requires a solution of the large system of linear equations. A special matrix factorization techniques that exploit the structure of the constraint matrix has been suggested for its computation. The method of Birge and Qi has been reported as efficient, stable and accurate for two-stage st...

متن کامل

Two-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods: Theory

We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results in Zhao [16] wherein it was shown that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrie...

متن کامل

Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse

Zhao [28] recently showed that the log barrier associated with the recourse function of twostage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self concordant family on the first stage solutions. In this paper we show that the recourse function is also strongly self-concordant and forms a self concordant family for the two-stage stochastic convex quadratic...

متن کامل

Solving non-linear portfolio optimization problems with the primal-dual interior point method

Stochastic programming is recognized as a powerful tool to help decision making under uncertainty in financial planning. The deterministic equivalent formulations of these stochastic programs have huge dimensions even for moderate numbers of assets, time stages and scenarios per time stage. So far models treated by mathematical programming approaches have been limited to simple linear or quadra...

متن کامل

Solving Stochastic Linear Programs with Restricted Recourse Using Interior Point Methods

In this paper we present a specialized matrix factorization procedure for computing the dual step in a primal-dual path-following interior point algorithm for solving two-stage stochastic linear programs with restricted recourse. The algorithm, based on the Birge-Qi factorization technique, takes advantage of both the dual block-angular structure of the constraint matrix and of the special stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1992